h’
QS&MFCHAN{CQ OF THE CEOMAGNETIC DYNAMO

2 BY

?

2

o EUGENE N. PARKER
-t

TECHNICAL REPORT NO. 5

1
™4 e

FJlift

1)

June 1, 1954

s
~
GQ

EARTH'S MAGNETISM AND MAGNETOHYDRODYNAMICS
CONTRACT Nonr 1288(00)
QFFICE OF NAVAL RESEARCH

DEPARTMENT OF PHYSICS
UNIVERSITY OF UTAH

SALT LAKE CITY



THIS REPORT HAS BEEN DELIMITED
AND CLEARED FOR PUBLIC RELEASE
UNDER DoD DIRECTIVE 5200,20 AND
NO RESTRICTIONS ARE IMPOSED UPON
ITS USE AND DISCLOSURE,

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED,



Mechanics of the Geomapnetic Dvnamo
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Denartment of Phvsics
University of Utgh
Salt Lake City 1, Utah

Abstract

After develuping the formal integration of ag_/at = Vx\y xﬁ),
it 1s shown ti.st cyvclonilcec convective nmotions in the core nroduce
magnetic loons in meridional planes through interactlon with the
toroidal magnetlic field. Expressing these loops in terms of the
usual orthogorial vector modes, 1t 1s shown that thev result in a
predominantly dipole field. Together with the nonuniform rotation
of the core, which produces the toroldal field from the dipclse
f1eld, the cvclonic motions result in a comnlets self-regenera-
ting magnetic dvnamo. We conclude that anv rotating, convecting,
electrically conducting mdv of sufficient size will vnossess a
magnetic field generated hy this dvnamo mechanism. The nossibility

of an a'ruvt reverasal of the field i1s discussed,




le Introduction

In the magnetohydrodynaemic theory of the Earth's
magnetic field (Elsasser, 19463 Bullard, 1949), it is shown
that the nonuniform rotation of the liquid core of the Earth will
‘produce 2 sircng toroidal fisld, (that 1s, a field along the
circles of latitude). The nonuniform rotation of the core is the
result cf the Coriolis forces which act upon the rising and falling
convective motions. If we are to show that the dipole field is
due to a self-sustaining dynumo, we must demcnstrate the existence
of a feedback 1ink, 1.e., of the mechanism by which the dipole fisld
i1s regenerated from the toroidal field,

Cowling (1933) has shown that there 1is no very direct
way of producling & dipole field with simple fluld moticng ws
must in particular abandon all models possessing rotational
symmetry. Cowling’s point is that in a dipole field there must
be a line singularity about which the magnetic field circles,

The field vanishes at the singularity, but the curl does not.

But for a steady state field, the fleld equations tell us that
the field B, curl &, and the current density @ , must all become
small of the same order if one of these quantities is small.
Hence such a field cannot be maintained in a steady state. The

linearity in Eé implies, furthermore, that a time dependent

velocity fleld is equally unable to maintain or amplify the field

in the average.,
In thls paper we first point out that, owing to the
Coriolis force, the radial convective streams must produce local

cyclonic and anticyclonic circulations somewhat resembling those




observed in the atmosphere. The deformsiion of the torcidal field
by these motions can be shown to give rise to the formation of
jovops of the magnetic lines of force in the meridional planes which
coalesce to a mean meridional ficld. The dipole can be shown to

Le by far the largest harmonic component of this field. Thus the
interaction of the cyclonic and antlcyclonic local metions with

the toroidsal field provides the desired feedback linky together
with the interaction of the nonuniform rotation of the core and

the dipole field, this constitutes a complete regenerative cycle.




2. Dynamica

The primary motions in the core are assumed to be
convective motions in a radial direction, {(Bullard, 1949%
Elsasser. 1850). It is rcadily demonstrated theat they result in
a noanuniform rotation of the core.in which the outer layers of the
core lag behind the average rotatior. and the inner cnes exceed
the averagsee.

In the atmosphere of the Farth the Coriolis force of
the large scale cyclonic motions shears the vertical motion to
such sn extent that the uctual direction of flcw in a rising eddy
may be lsss than a degree from the horizontal. We do not expect
the shearing to be so large 1In the core because of the retarding
forces sxerted by the toroidal field. Bullard (1954) has shown
that for any self-sustaining dynamo there exists a steady state
velocity which, when exceeded, causes the magnetlc fleld to grow
until its reactive forces balance the mechanical forces driving
the dynamo. Assuming that the core of the Earth is a self-
sustalning dynamo, we expect to find it operating near the steady
state velocity with the Coriolis force balancing the reaction
of the toroidal fisld.

Defining the magnetic Reynolds number «f the nonuniform
rotation in terms of the radius of the rore, Bullard (1954) finds
it to be of the order of 25 for steady state operation. If we
choose & = 3.5 x 10% mho/m (Elsasser, 1950) we obtain toroidal
velocities of the order of C.1 mm/sec. To obtain an cstimte of
the radial velocities required we shall asSsume a suitable value

for the toroidal field and estimate the Coriolis force needed to

i
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overcome its reaction. A value of 40 gauss seems a reasonable

lower limit on the torolidal field,13@ , and four gauss for the
dipole field B,. The reactive force per unit mass is(§7xg§)xg§4%ﬁo
newtones/kg where 7 is the density of the medium. Approximating
this as B, Bd/‘/\L/yL{o) where L 1s scme c¢haracteristic length, we

10

obtain a force of the order of 1.3 x 10™ " knewtons/kg for

2 =10 gm/cm3 and L = 1000 kxm. With c> ~ 10"% sec”™ ws obtain
a lower limit on the average radial velocity of 10-3 mm/sec.
The individual active convective regions probably have radial

velocities one or two powers of ten larger thsn this, say 10-2

s0 10°1

mm/sec, and we estimate the ratio of toroidal to radial
velocity to be ten or less, wherees in the atmosphere this ratio
i1s generally of the order of a hundred.

In this paper we shall disregard the nonuniform rotation
and shall consider only the interaction of the radial motions with
the toroidal field. Consider, then, a radial, convective stiream
wi<h the associated influx and efflux of matter at its ends., A
rising stresm will result in an efflux of fluid near the surface
of the core and an influx near the center, and ccnverssaly for a
descending stream. As is well known from meteorological phencmena,
the Coriolis forces resulting from the influx and efflux produce
a rotation of tne convective column about its axis. To formulate
this, we define a local cartesian coordinate system (§,r1,37
where the £ -axis is tangent to the line of longitude through
the origin and the positive £ -axis points souths the n -axis
is tangent to a line of latitude through the origin and points

east, and the ¥ -axis is5 directed radially outwards. We defins

o=V (87 W)
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end the poiar angie Y measuring azimuth about the { ~axis from
the £ -axis. In thls system we represent an outflow from the

radlal motion as

1‘=v.(/0)(s§c055// +£,\5m¥{/\' , s =P, cos Y = g//’
where the € 's gre unit vectors in the correspcnding directions,

The anguiar velocity of the Earth is
o = o <s,cosb" -- Cgsms)

where © is the colatitude cof the origin ol the (£,n , Y ) system.

The Coriolis force due to this efflux is

-
—2({-;,_)x!.) =2 o..-v.(.a)[eécosﬁ cosyl - € cosbOeash - €, sn B Sin \J/J

The % <component of the curl of this force 1is

T-Z ; — 2 e N\ =)
Cur‘l),[ (.‘-:."‘.‘!.)]. —a—g‘k Crrxa ) ‘ﬂ(‘zﬂx!l)i

= =2 5 coss/-—l: i(ﬂv,)

a9ow)/%§o is positive for an efflux and negative for an influxg
this defines the sense of the clrculatiocn,

We shall furthermore assume that the dissipatlive forcss
of viscosity. turbulence, etc. may be neglscted in a r'irst approxi-
mation (the Reynolds number being large) with the result that ths
convecting regions will always show a sense of circulation cerres-
ponding to an influx: The convective region 1is set in rotatlon by
the influxj in the absence of dissipation the angular momentum of
tne convective column is conserved and 1s stopped only by the
equal and opposlite angular impulse of the efflux at the terminus
of the ceonvectlve stream. In the northern hemisphere the circula-

tion is counterclockwise, in the southern hemlsphere clockwise, if




viewed from outside

figure 1.

the core.
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These motions are illustrated in




3. Magnetic Field

Bullard (1954) hys anslyzed the toroidal magnetic
field generated by the interaction of the nonuniform rot2tion with
the dipole rield. The result essential to the feedback link
discussed in this paper is that the toroldal field has a meximum
about hglf or twoc thirds of the way out from the center of the
core and drops off to Zero near the center and near ths surface.

The conductivity of the core is sufficiently high so that
fluid velocities of 10™> mm/sec or more may be expected to carry
the lines of force along bodily. Thus, a conve ctive upwelling
produces an upward bulge in the toroidal field. The rotation of
the upwelling about the radial direction twists this bulge into
a loop with g nonvanishing projection on the meridional plane
resulting, in the northern hemisphere, in the sequence illustrated
in figure 2. Figurec 3 shows the similar process occurring in a
sinking column of fluid in the northern hemisphere. In the southern
hemisphers the se. 3e of the toroidal fileld and of the rotation of
the convective column are reversed. Figure 4 i1llustrates the
complete dynamoc model: A typical line of force of the dipcle fleld
of the Earth is shovn as having been drawn out by the nonuniform
rotation to give a toroidal fields the loops produced from the
toroidal field by convective motions in both hemispheres ure
shown. We note that the loops produced nearest the surface of
the core arise from rising convective currents and have the same
sense of circulation as the overall external dipole fleld of the

corey the loops produced near the center of the core have the
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opposite sense, but thelr great depth means that they will decay
before diffusing to the upper part of the core where the main
amplification of the toroidal field occurs. The dipole field
observed outslde the core, which 1is due to the coalescahce of

all the loops formed by the convective motions, will have the same
sense as the original dipole field,

This qualitetive discussion indicates that the simple
dynamical model of the convective motions presented in the previous
section should result in a self-sustaining dynamo with a dipole
field®., 1Insofar as our model is correct,it would follow that any
sufficiently large, convecting, electricgily conducting fluid body
should exhibit & magnetic dipole roughly psarallel to the axis of
rotstion if the body rotates rapidly enough. On reversing the
sense of either the magnetic fleld or the rotation of the vody
in the diggrams we sce thst the amplificatory process is inde-
pendent of either. Thus, the sense of the dipole field wili
depend only on the ssnse of the initiagl field from which 1t was

generated.

*Phe entire process has been dubbed the bathtub effett b
for, as every physics freshman has heard, the rotatiIon of the
water running into the drain of a bathtub is the result of the
Coriolls force,
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4, Generation of Locops

The basic equations for the deformation of the magnetic
Tield B by the velocity field ¢ are, for a perfectly conducting
fluid (Elsasser, 1950)

2L - UxexB) (1)

This differential equation 1s aquivalent to the integral equation

d 7 2
S [B-ds=o0 ()
where 435 is an element of a surface moving with the fluid. It

fcllows that the complete integral of (1) is

fE»'CJS = constant (3)

which may be written as three linear simultanecus algebraic
equstions for B; by choosing infinitesimal areas over which to
integrate. Thus we consider the infinitesimal element of volume
determined at time t = O by the three linearly independent, but
otherwise arbitrary, vectors &éa: ,&b., &c: . Let now one corner

of this element of volume be at =x=.' , then

55; - x.“ - X.ll 6 C. = 7--‘[ - k. d (4)

At some later time, t , we write for the same material element
N t { . . .
SA. = o = S —iE L sp (5)
=X =X, 8B =X, X sC =X, - X,
The Lagrangian coordinates X' are functions of the initial

position x‘ and of t, so that
X = X'(=. 1)

Now
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x|' = X;(x,;,{) =—X“’\z.i+ 5;;){) = X:(x_.ivl)ﬂ- Bx (1.l t) Sa + ;(823

A
bx." - o

and similarly for )<,L and ><,‘ . Hence, by (5)

SA, = 2X Y N Zﬁ‘—@x—"—'i)abk/ N =?—-—x\o—(ji:—"-£-)8c.(5)

>x,.* 2,
The areas of the faces of the element of volume are

(we use summa®ion convention)

™S4, 8B, et B 8C, . e ™G A

where € ‘* is the usual permutation tensor, being +1 if ijk 1s

an even, =1 1f 1t 1s an odd permutation of 1, 2, 3, and zero other-
wise. If the magnetic fleld 1s writtern as E2.(X’, {) with the
initial value B:(x’ ¢) = b:(x?) ,  the flux through the
face bounded by SA; and SB; 1e initlally b.e'* SA; 8RB, 3 at
time t 1t 1s B, ¢ 8A,eR, 3 and similarly for the other

two sides, Thus, upon using (6) to eliminate B A: B, and 8¢,

we find from (3)

- ) u
b.e‘t sa,8 b, = B cr2X' X £a, &b,
>x” Odx*

s g P X :
ki€ " sb; Sc, = B: et 22 Sy o B (7)
‘ K- A
b-g"'lk Sc¢; xnay = B‘E“h éﬁ“ —EX.ECf Sa,
S ] > ‘b\' bl‘
8ince the ®&a,, B8k: and &ec: are essentially arbitrary, we

may set

S5, F §,; S = Dy, Cc: = By,

i )

where & is the usual Kronecker delta. Then (7) reduces to

b= B e 2X 2K - B, e XX L o B, 2K 22X (8)

~
.

25! =t ) Dyr? Adx? DX O’
These three linear algebralc equations can be sclved

to yield B (X',${) 1in terms of b.(x’) and the Lagrangilan
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coordinatas )(J. To facilitate this solution we denote by Jg the
derivative BXV‘Dx‘ s the J.

; form a matrix which we shall write

as (J ). The determinant of this matrix, denoted by |J!| , is the
Jacobian of the transformation X = X (x!, t),., If (b} and (B)
denote the column matrices with components b. and B, respectively,

then (28) may be written
(b) = @d;I)(B)

where the adjoint matrix is defined as usual, by the relation
=d;J = (J)7 1 J)

and hence

}
B) = T (J (&) (9)
Thus, finallyl)

which is the general solution of (1),

We shall now use (10) to demonstrate that rotating
convective currents will produce loops of magnetlic flux which are
displaced, relative to the height of the toroidal fleld, in the
direction of the convective motion. Since we use the Lagrangian
method, the velocity fisld must be expressed in terms of the dis-
placement of the indivi!dual fluid particles, On the assumptions
made the trajectory of a particle will, in the first approximation,

be a helix, We set

ég.-:_ﬂuns

dt a L ,Q_JE =V, R"/&) (Il)

(n) (_:ii:ﬁ
Y 7 dt aéS(/a)/‘Jt

The pitch of each helix is (V-/W-X&.//cj R(,a)/ S ()

oms steps of this integration procedure have glready
been indicated by Lundquist (1952)
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/o=>‘, g'—‘)\cos[‘g' SO)t*})\.] /rL-:).s;r\{%'S(%)t‘r X.]‘j= v ROt + A,

-1

Integrating (11) we obtain
(12)

where X\, ), and X, are constants of integration. If & = §

>

Y‘L= P and j:}’. for t. = O, then

It folleows that

2h o B B2

2>§_ ) ) B']

)

o BN BB 22X 22 =

= Ne A, XA 2h 2,
. >\ 2;. 4 2 R (&) .
2A o A 2h, - X
8. »ol e TN 3y,
Using (14) it is readily shcwn from (12) that

28 _ | ” ,
56 = -—A"a(§.§ i) = At S.stvt L

2 _ 1 p -

s " (eE - -2 sty R
> S :
b—'}g. =-n(E-8n)+ 28 sSotE

=) = _|— W o

3'}1.‘ x(é-é“l-'\)*‘a—“\"g(”t% , 22 =0

%: wRntE 2L urmtN | 23

8. A 2. A >5

The flow 18 fmsomprossibls and 1o — 4 .

We now specify our magnetic field as purely toroidal

and locally a functican or height only, say

B, = B=oc, B = B() (15)

Prom (1C) we then rind




=13

B = BUD2E - BO)[4 (W6~ 8- St}

1

} = DL S . e 4
| B, (3’)__&_}\. = B(B’.)[,\; (€ +r.) + Zn. SO _ﬂ (16)

= 25 _ y L
B, = B(r.)%—% =BEwRWL

Let us now use (12) to eliminate &,  n,  and § from

(16)., From (13) we may rewrite (12) as

; E=E o]y SON] - q. e[z S0
A\ = B sin[g SOIt] + ., cos [¥soot)

S Solving these two equaticns for &, and 1. and using (12) again

we obtaln
! €. = € cos [2 SON] +nsm [# S0t

Ne =~ Esm [z SO +n cos [-a“‘ S(,\)i]

5. = 5 - wRWL ext

We let E = \cosy and n = A siny/ so that

i - = - (18]
i & =deos [ - % set], = ron [ -2 St ne
Using (17) and (18) we now rewrite (16) as

; N
By = -B(-w mx)t){sm(ﬂ; SO + £ SO) M sing sinw- 2 SWH]

B, =+B (5 -w I?O\){){cas(—;’:— SOM) + 2 SO rtcosy sinfy- SO\)Q] 19

’ |
=+B (§ - RO w RO sin| - 2 S0)¢] r

I
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Let us investigate the field in tre F§E& . plane., We

put ¥ = 0 and obtain

By = = B(¥-w R sin[2 SOH]

B, =+B( _V.R(m){cos |z SO - 2 ST At smfze S(/\)t]} g (20)

By =- B({-wROt) « R'GIL 2 2 S(A)t]

We are primarily Interested 1a the loops formed and we
therefore subtract from this field the portions that do not con-
tribute tc the loops, namely, those due to the motion in the ¢
direction galone and those due to the circular motion about the
Y — axis alone, so as to retain only the part that results fromn
the éuperposition of these moticns. Thus. for w, =¢o we write the
ficld as

Y= O , o = B(f-wROL), « =0

For v. = O we write

S = - B(§) sin 2 SO0t

TN - 1 B
B =+ B feos[ 2 Sut] - 2 S0 At wia[E S0

/63=o

Hence

B--G = [BU- B(y-wroI)] sn [ SO

B, - a-A= [BE-wRO) - B(xj{cos[g’ St~ Syt Sih[%"S()«)i]}

- B(5 - w«ROEL)

By -~ S = - B(y-w f?()\,‘f)v..'?'()«)r sin }:ﬁl

i/}

)t

[ S——




The pro jections of the lines of forcz on the 5§ -plane

saticsfy the differentlal equation

dy - By - | BUE-wRMH wRO)E (
. Bg - v -5 B -v.Rt) - B(5)

14v]
(o]
~r

We define thc varlable i as

v R (22)

P
so that

d = v RNt JN

Then

_ BW
b = [' B(S-/-)]AS

Thils may be rewritten as

B(S—e)d(¥-) = B(¥)dY¥ (23)
We define the function 1(x) as
T = fdz B (x> (24)

The integral of (23) becomes

I(s-v. PO = I(%) + C (25)

If we assume that (i i3 a functicn heving a meximum
at A=0 and decreasing monotcnically to zero for large |N , it
can be shown that (25) results in magnetic loons; the loows for

special case that

RO) = cxp<- %‘/’a") , B(s) = B expC b ar)

are shown in figure 5 for wt =a . The neutrél noint 1is

E=o0, 5= wt/2 = a/2.
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Thus, we have demonstrated that the loops are c<isnlaced
in the direction of the convective motion,

It i1s well to note that if w. 1s so large that the
convective column rotates more than one hait a revolution after
passing through the toroidal.fieldj the nense of part of each loop
will be reversed. We shall assume thet loop:s in the first half
revolution predominate s2nd the average sense 1s as 1llustrated in
figures 2. 3, and 4.

In the next section where we study the coalescence of
looos, we shall see that a set of loops of one sense of flux albove
the toroidal fleld and another set of the onnoslte sense below this
fleld combine in such a wav that the net average fleld is dominated
ty the loops at the higher level, 1.e., the resulting voloidal field
of the core has the same sense as the upner loguna., We know 1little
about the dvnamics of convective nmotion and 1t 1s quite vossible
that iIn the core there are rising and descending streams in equal
nurbers and of svmmetrical structure. Again, it 1is vnossible that
the convective motion 1s assymmetrical, the ascending streans
being concentreted in narrow reglons and the compensating descending

motlions heing spread over = larg

ras {the
tng reg (yLne

m
o

femlilier vattern of
atmo spheric thunder stcrms). Now it can be demonstrated that in
such 3 model of convectlion only the intense rising currents nroduce

armreclable megnetic locrns whereas the contributien of the spread-

out subsiding motions to the meridional ma.netic fleld is nepligitle,

This might be shown on using the nreceding snalvysis, but the cal-
culetions turn out to be extremely involved. In the appendix
we therefore solve equation (1) apain, this time by a verturbation

procedure. In the anproximation which we use, the displacement of
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the loops in the directlon of the convective strcam does not vet
anneary on the other hand we obtain simple analytical expressilons
for the secondary magnetic field, and these exhibit clearly the
fact that the contribution of the snread-out descending motlons to
the meridional loors is negligible. The general conclusinn 1s that
we can construct a self-sustalining dynamc on the basis of either a

svrmetrical or an asymetrical kinematical model of convectione.

Ll o L TEt

-
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5, Coalescence of Loops

It remains to te shown that a number of loops with the
sense indicsted in figure 4 will actually result in a field ob-
served outside the core which 1s predominantly a divole field.

Tne study of the geomagnetic secular variation shows (Elsasser,
1950) that there are about fourteen distinct local irregnlarities
in the field of the Earth., Taking this figure as a lower limit cn
the total number of locus 1n various stages of decav in the core,
the total number of loopa might be as hirsh as twice this amcunt.
We shall assume that the loops are distributed randomly over a
sphere of given radius concentric with the core, and we shall
represent this distribution by & uniform average density.

Before we cerry out the calculations,; let us briefly dis-
cuss this averaging ovrocess. We shall find that the loons produced
beneath the toroidal field by descending currents of fluid (and
which have the ™wrong" sense for feedback) are buried so deeprly
in the core that they do not contribute appreclably to the resultant
mean poloidal field., Since the coalescence prublem is linear, we
may demonstrate this fact in the following fashion: We first com-~
pute the mggnitude of the mean vrololidal field with the restriction
that the loovns are confined within a sphere of arbitrary radius
not exceeding the radius of the core., We can then revrrcsent the
condlition where there are loops of one sense in the upver and loops
of the opvosite sense in the lower part of the core by means of
a linear superpcsition of two concentric snheres of different

diameters, each beilng filled with loops of only one sipn,




Let r,2*", ¢* be a system of polar coordinates whose origin is at

the center of the ccre., Let a desirnate the linear dimensicns of

a tynical icopy we assume the loons small, a<< P where P designates
now the radius of the core. Consider a loop whose center 1is at

r=Fy=,¢*=d> For any poirnt on the loov we set

+ 2t = o+ @ (28)

r=MR4+o 2+ ¥ = = )
where/o,ﬁzc( are small gquantities of order a/FRR whose higher
powers will be neglected.

To simolify the calculations we next assume that the loop
can be descrihed LY means of a gaussian svmetrical about the

loop center. We chocseo

BR. = — ES.a5 s exp T—i (p YRt Risint e 4"‘)]

-

B, = +B.2 exp|-h(cr R iR e«
-
B.

m ) .

P
the lines of force are rircles with centers on the ® -axisj together

they form a torus of magnetic flux. Scme of the later analysis

is more conveniently carried out if we work with the curl of the

magnetic £ield, since this is a toroidal rather than a voloidal

vector (Elzasser 1946). We shall need onlv the ¢ -comvonent of

the curl for reasons that will avnear oresently.

@xg) = 2B (1% - F9) e [-d (e R e e e)] @
We now expand (27) in terms of orthogonal toroidal vector

modes, whereupon we average over all possible positions of the loop

centers, If the distribution function of the loons 1s independent

of & , only the rotationally sywmetric modes (zonal harmonics)

will survive the averaging orocess. The toroidal zonal modes are
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e »
—T';(n) = L.)(-\u = ; —_!:(hu = C., J (.k;,.r) JP(&:}?:} ) (28)

where )'. (x) is a spherical Bessel function defined (Stratton, 1941)

as (gz,/(z*))v'\Twn(x) and where the boundary conditions require the

ke, to be the roots of (Elsasser, 1946)

jom (ke P) = 0, (29)
P being the radius of the core,

We now develon (28) in ascending nowers of the small quan-

tities/o and 2} defined in (26).

~ x . L oeV)) (30
-T_Q(nu = (An:"f [3"/0 + C“ R 2 uxﬂ + Ens/oz} + Foo v +O§A )) ( )
We will be interested only in D.. end E.‘ which are readily found
from (28) to be

S pCkanRY dT (cosaEn) = <L ) (kR ﬁ.(i’_@i) (=2
Dn; 2’ deJ 4@ )F_n; 2_')( ) d@" O)

The modes :I;” are orthogonal so that il we writs

V)(‘.&:TT

L% 1 - (“) 2

multiply by T » and Integrate over the volume of the ®re, we

(L)
obtain
W+ x@® 5 = [[foe T T,
Noting that
Apum}’) f _ 2Znlm))
fch/ srnq} el'l)" j _/ d/u(’ /M)I_P (’“')-J 2n+ |

acRobert, 1948, pp. 105), and that

] 2
[(-ﬂll" r? 'j” a(khf'> = ‘% [‘;af‘ f‘[v-]:““ (ku ")] = —é- p)}.n (kln P)

(from (29) and Jahnke-Emde, 1945, pg. 146), we obtain

I
//fd’! T L, = <P, P) = 2rer) <5}

S
From (27) and (30) we find iad
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- = a
// drOxB)- T, = - = B.c, a‘[D,, ok O(F)| (34)

all other terms cancelling out for reasons of svmmetry. Sub-

stituting (33) and (34) into (%2) we obta’n finally
Coy = — &(D; + 5!.‘ V”; 3;4 (Zf\ﬁl) (35)
~ = Jn ("lv- P) 2n (."'H' ))

We next conaider the tire denendence of the loops. They
will arnear in some random fashion and decav subsequently., The
eagsjest way to discuss the decay of the normal modes will be to
use the time dependent difrferential equation with a suitable
source function f,(1). The amplitude 7% (t) of the n,s mode

“hen satisfies

Noe 22, (8) + jl—tx‘(f) = ,ﬂ.(t), Now = —= (26)

The general soliution of this egqustion is

t
7:;(4:) = /&t' {‘-nl(t') QXP [/\nt (t'“ t):j

et ug amassume that the loops avnncar suddenly at random times

tfg thereafter they merely spread out by diffusion. It is readily

seen that the source function ﬂ.({) is vrovortional to the rate

of appearance of the loopsy we therefore take

foo = cZ SQt= ko)

where &(t-t,;) is a Dirac delta function. Then

%00 = e 2 exp[A(ti-t)]

where the summaticn is over all ( for which L3> t,

The average of 2 (t) over time is
T

(7)) = "m g'rr ﬂ;t 7 (t)

which gives after some calculation
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. L5 bt - P (37)
<7:,> = "-r’—l,mao 27 A /

where » 1s the number of loops vnroduced ner unit time,

ing

We assume the apriori probability of a locp apvpsaring at
(R,@,db) to be h(R) , normelized to rive unity when integrated

over the snhere. The expectation value over roth snace and tinme

Of o 2

the amplitude —-’\: is

K7, f:l@ snn®/aR R n(R) {?n) (38)
Using (31), (35), and (37) we obtain

5 = - 2nt ) Buxiug at T.GII(ns) + I,(0) Lin,e)
Kxny = T () (P (e P [ n) I, " ]

—~
)
%)

~—

and

-~

I,n= /A@ sin & —————-—ée“; ”;"‘..! , L) = /0.:4@ sin & -—-—-—-‘r'b'j::‘@)
- : djs (ku R (40)
I,(n5) = [dEuRGnR) h(R) SaleeR)
han P>

Lime = [ dEaR) AR e R
To evaluate I,(n) we integrate by parts and obtain
AN =~ /.:{cg; coS ED R(ccs @)
This may be evaluated (MacR;‘;ertg 1948, pg. 106) to give
T.(zm)= O, T (2ns.) = —(0e2)T(neR) (41)
’ T(nes) [(n+2)

To eval uate I,(n) we note that

dP (COSQ) = - sin &> dp((os@)
d & d(cos =)

which vanishes at &>=oor » , Thus upon integration by narts

we cbtain
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Iz(n' S I‘(n) (42)

To evaluate I,(ngo and X.,(n,s) we mucst assume a form for

h(R) « Le% us assume equal sapriori probability of nreducticn of
loops over a sphere of radius . < P and zero nrobability outside.

With suitable normalization we then have

(2 for RCR, —
h(®) = TR (43)
(o for R >R,
By (41) we need only consider modesa of odd order, and for these,

) % iz Ry R 5 Wattan, 1R,
&5@’ I,CZ”‘",S) =[c4u u‘d ""'('U)) ﬂ.;i'-;rq(an+l)s) - (du jh.'(u) (44)

du*
@ °

To evaluate I,(2n+1,5 ) we integrate bvy parts and obtain

L,(z2ne1,8) = 21T, (2nt1,8) + I (2n+1,s) (45)
where

. | & .
f‘-ﬁs—‘? To@ri 1 8) = (ks R Jar (Ko R = 2 (ot 2 )y R jonn (sans RN 46)

Consider finalliy s (2n+|,s) o We use the identity

. - __. ~
Flo) = -v j’:[u' jm € |
and integrate by parts. Repeating the process n times gives

f ' ‘_"_ 2"7\| .)'1---\<U)
Jdu Yo (U) = — nL“ ooyl oo

Noting that for small

Jo () ~ @Tu,)” )(Zr\-H).'.' =@n+l12r\-—l)‘ -
we have
A‘RR.! I ( 2"h| o 2"‘ ) j Q_\ R)
= 4 2n+l s) =" _ __ N 2aem stane) TR
5 e (@ns ) (e (O-m)) Q.ua.,);r\:.)f (47)
Using (42) ard (45) we obtain
(<3;M“>> =) == —57"""4)/.6 2 (45; '3)_.[\ (2r\+ |illif2n,.l) §)-§-Is.(2f\1 ), 5)] (48)

At 274 ) (ke P Y (kacoms P)
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Consider now the expansion of B in terms cf ortn~ronal

poloidal mcdes §,., o Thdse ure rclated to the I by

From (28) we compute then
Jo (ke R) B Cos &)
S“m = oy n(ne 1) P L@:up)(k,. R) (49)

From (48), which gives & 7:.>> s the mean value of ¢, ,

and from (40’'we find that the expectation value of B, is

=2 Z: Z Sr(nl)
PZ._SZ:%;|X2,,*2)Z<<2:‘>> j:m- k RIR, (cor &

= kl(‘l\’l) P k!()uﬂ) R)

e YT Ry C0) i CH. 2 A SR I [ O
n=e =i (k‘(zm.) P)4 Q<su.—.’.) R) ).1,“ :(“x(:-\..) P)

x E.. (cos G?.))

where
5 -
8 /! (50)

The expectation value of the coefficient [, of P (ios @) 1is

e -_— 8.-'2-

R = @eRY3)[Taens 19 v L vt )i GeresR)

LY ) QQSOM D) p)4 (JK:(;..,.) Q) j:.«“ '(k,("‘l) p)

To compare these recults with observation we compute N
and [ ; the coefficlents of the dipole and octuvole moments for var-
ious values of <, . The recults are given in ta»le 1 for the
magnitude of thece coerficients st the surface of the core, whence
they can readily e converted to the_corresponding values at the

surface of the earth.
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TABLE 1
THE COEFFTCIENTS OF :!—‘:'(COSQ) AND R(Cos @) AT 1/ SURFAC: OF THE
CORE
Bars NGY) NGH)
P € _——
€

0e¢5 -0,0222 =0.0N0086

~ 008 "000816 “'0900255

Ce9 -C.,120 -0,01125

1.0 -0,162 +0.C251

Nowwe have shown nrevisuslv that the loops oroduced
by downgolng currents are onoosite in sipn to the loors vrodiced
by ungolng currentss we reriarked that the loops nroduc=d by the
downgecing currents were formed farther from the surface of the core
than the loops formed by rising currents and therefore would make
a much smaller contribution. Let us now show gquantitatively that
this i3 the case. Let us assume that the downgoing lcops are
nrodiced only out to R = F°/2 and that they uare ovposite in

sign and equal in number to the loops resulting from rising

currents, which are produced in the region F/2 L RLP . Table
1 shows that [ (R) >> L. (P/2) for . 2% P

The superposition ot the upgoing and downgoing loops gives
a net fi2laof [, (R) = I, (P/2), The ratlo of the dipole to
the octupole terms at R=F is piven in iable 2 for M =08 O
end IO , We expect that i 1s somewhat less than P : It is
chysically imoossible to nroduce a loon of finite size exactly
at R =P 3 the tornidal field from which the loops are formed
goes to zero at R=P (Bullard, 1954). Observation indicates
a valne of ehout 15,7 for the ratio of the P componant to the R

component at the surface of the core, (Elsasser, 1941) which
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agrees with our calculations for . ~ O.85 &

TABLE 2.
RATIO OF ZONAL DIPOLE T0 OCTUFCLE MODES
AT THE SURFACE OF THE CORE

T =T (P/2)
F(R) =T (Pr2)

TR

0.8 18.5
0.9 8.1
1.0 S.4

There is probably no point in computing higher modes than
the octupole term because the external fields of these modes are
strongly influenced by the random motions near the surface of the
coreg thus, as with the observed quacdrucole ffeld, it is mosti
likely that they arise mainly from random fluctuations rather than
from the average feedback efiect discussed here.

In the above numerical calculaticns we have neglected the
effects of a possitle inner sc0lid core because the wolume of such
a sphere is small compared to the volume of the entire ccre, and
because, as has been shown, [ (R,) decreases so ranidly with
K. . If cne dssired to take into account an inner core, it
would only be necessary to superpose a third set of loops confined
within a radius R ~ P/3tu neutralize 211 other loops in R R,.
The net field would then be [, (F2)— L. (F/2)+ Kl (R/) whers K

s equal to (3/&~)[ef" - /R’ - The effect of K [, (F)  will

be small.

Finally, we note that,with a toroidel field which vanishes

at the equator an¢ the poles, our assumntion that the loops are




distributed uniformly over latitude is at bes*t a rough approxi-
mation to the actval conditionss we may exnmect the loops to be
concentrated in miccéle le iltudes., If this is adnitted,the ratio
of the dipole to the octupmole term may te made arbitrarily liarge,
for instance by concentrating the loops near lalituce i50° where

_both ¥ and its second derivative are small,

o e o e
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6 - Reversal of Fieild

Runcorn (1954) has cited geological evidence to the effect
that the dipole field of the Earth has reversed itself in the past.
The gquestion naturally arises as to whether such a reversal can be
incorporated into the model presented in this paper. Apparently
there is a means of reversing the dipole if one assumes a sudder
large increase in the convective motions within the core, as the
followingz quelitative discussion will indicate,

The decesy of the magnetic field in a dwnamo mav be thought
of as a slipping of the lines of force heck through the fluid,
squivalent to an attemnt to unwind the contortions introduced by
the motion of the fluid. In a steadyv state dynamo it 1s physicelly
obvious that the s8lip velocity and the fluild velocity are comparable,
which 1s another way of saving that the characteristic time of the
circulation of the fluid and the decay time of the magnetic field
are compa~able. Indeed, it can be shown that the regenerative
operation of the dynamo requires a certain amount of phase shift
resulting frem the decay (Badi and Gold, 1950); the decay acts in a
very crude sense as the commutator of the dynamo. One might expect,
then, that the regenerative process of the dynamo would be thrown
out of gear if, {or instance, the characteristic time of the cir-
culation of the fluid were to be suddenly decreased,

To see just what will ge wrone in our dynamo, let us
censider a loop of flux produced near the surface of the core by a
rising current as shown in figure 6. Fcr normal steady operation
of the dyname, we find that during the time that the loop 1is being

produced and then drawn out to reinforce the tornidal field, it will
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diffuse as is incicated by the broken line in fipure 63 the side of
the loop nearer the surface of the core will diffure un through the
surface of the ccre into Lnhe mantle and so escape the nonuniform
rotation of the core. Hence it will not contribute to the toroidal
T'ield, which then results primarily from the side of the loop nearer
the center of the core. But suppcese, or the other hand, thet Just
as the loop is being formed, the velocity of the fluld 1ncreases

in order of magnitude. The diffusion of the loov will not have
time to occur and both sides of the loovn, not Jjust the inner side,
will be subject to the nonuniform rotation of ths core and contri-
bute to the toroidal field. The outer side of the loop is in a
direction such that 1t will degenerate the existing toroidal fileld

near the surface of ths core. This degeneration will continue

[o}]

until the toroidal field reverses. The reversal will start at

the surface of the core end occupy an increasinglv thick shells

looprs produced in the reversed layers will degenerate the dirole
tield. The characteristic decay time of the toroidal field 1s of

the order of 10% years for 6 = 3x10° mio/m (Elsasser 1950)y the
characteristic time of formation of a loop 1is 600 years for a char-
acteristic langth of 1000 km and a velocity of 0.05 mm/sec. Thus,

we see that the reversed torcidal field, ir once begun by a brief

uld cversist long enovgh to completely

decenzrate and ultimately reverse the dipols field,
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5 31..

Appendix

We shall treat thzs case of a convective stream closed in
itself but so that the motion in one (zay the upoward) direction is
stronglvy concentrated whereas the return flow 48 svread cver a wide
region, As announced in the text we shall show that the return flow
makes only a negligible contribution to the formation of magnetic
loor in the meridioral vlanes,

We use the local cartesian system (E,n, ¥ ) and assume a
toroidal field of the form (15)., Let the velocity field of the fluid
be w= v+ w : u revoresents the convectlon along the ¢ -axis
together with the associated influx and efflux and the necessary
return flowy w represents the rotation of the fluid about the
¥ -axis.

Without toc mueh ioss of generality we nmay take Vg =0

and set
b= - e OXE YO Z(E) | o= w0 &) XEY(IZ(S)

where the vrimes denote derivetives. We reoresent w bty w =o and

we= LW AR S(Y) |, wm = N()E R S(¥)
where u.{(tJ and () (t) are reoresentative of the corresvonding
magnitudes, providsd all the other functions are suitably normalizad.
The forms (3) and {4) guarantee that V-2 and . w venish,

¥rom (i) we have for the first-crder perturbation of the

magnetic tielad,

£ = [dt vx [wrw.E]

The second-order perturbation field is




-z
t

> () = [fd"t Vx[(g *u)"ﬁ(lﬂ

el J, (L))
This field consists of the sum of four terms which arise devernding
on whether the first step of the interaction is taken fto involve
either v or w , and whether the se&cond sfen involves either o or we
Two of these terms are quadratic, in u aione and in w alonej 1t
ic physically obvious that they willl not contribute to loops 1in the
meridional or $€-vlanes. This mav be demonstrated quantitatively
by noting that the E -comnonent of the term of second order in u,(t)
and the ¥ -comoonent of the term of second order in N (L) are zero.
Thus the terms cannot contribute individually. If we combine the
nonzero 3-component of the former and the nonzero § -component of
the latter, we obtain a fileld which can be shown to have no net
clrculation about the rlmaxis. We therefore omit these quadratic
terms and kecp only the two mixed terms which involve g 1n one step
of the interaction and w 1in the other. After somewhat lengthy
but stralghtforward calculations this nart of the second-order field,

say §(t), is found to have the followins cemnonents in the meridional

o = F0x® [ [2 veo2 « Re2] 2'(5) 509 BY)
/

. | " .
(B RAIY 0 - R AT 0200 sen B
(a)

+ [%Y'(\)\R(ﬂ)] S5 [-;% 2(‘5)5<3)}

el . ,
) = 1) (- 3 X(2) 2 ARG YU + x(®) |2 AY O Res)]

(5)
'-a N " " _'\
EX®O RO - ex(8) [2 R (V1 2(5)S(8) BCs)
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wkere )
£ ¢ ‘ F e
= [del o [0 = [dURE) [ 40w
The field 1lin=s of Y w and 5 are given by
dn o df 0 B o d 48 - dy _ 4y (c)
U.\ J.). W; W\ ) Sf S\ 6’

For w we obtain the family of curves

) Zls) = G (d)

For

13

(e)

where C, and C, are ths psrameters of each family. The differentilal
egquation for the field lines of & 1s not readilv intz2grated except
in svecial cases. We therefore consider the case of a gausslan

distribution

X(€)= expl £) | YO = nerpl- &), 2(5) = exel- L)

Rio)=expl &) | S(o)= expl-£ ), B = E%'*P['&ﬁg]

Then (d) becomes

rlex,o[—-;—lof-f X?]: C, eor nF fe = a‘\n—g (£)

and (a) and (b) hecome
Sg(t) e (B2 ['I')T(m){-u(\)] .xpl'___az_i (§‘+m‘+3‘)_ ML]
< (g)
r 3 N ) [ &
& (t) = FOB. 2 & o) QXPL_%(\g +nie ) - Qscfs) }
where
=2 : 27 _ M) y_2bll.sAY _4/;- (h)
n) =& (1+28) +2(1-28) v =2 li-2y o= £(0- &) P
The neutral 1line where E3(£)and 8xﬁ)vanish simultaneously

will be denoted by &_(n) ( . We see from (g) that
N/, J. N




E(u=0, 50 =2 ke

7cCn)
Suhstituting (g) into (¢) we ohtain for the field lines of §(t) the

fam!lly of curves

[y -] + 2 ¢€ -« fh

These are ellipses for qf<’a‘ with centers on the neutral line..
For n')> a* the linez form hyperbolas.

The vroblem of defining the "strength™ of the magnetic
ioop generated offers some difficulty. The n -ccmponent of curl §
vanishes on Iintegratlion over the volume, but this does not meen that
there 1s no net clirculation of magnetic flux about the neutral line.
Perhars the simnlest way to demonstrate that such a circulatisn has
been generated is the following: We compute the flux across the ny -
pl ane above 31(\), ard show that at least some of it bends around so

as to penetrate the surface S5 = Y.(n), € > o . The fiuxes are

e e o»

g=o r
45 5, )©g=—/<*1/°d§ s!/

/‘: ! Y=2)

D =t j.e. 1)
pACH)
Using (g) we f{ind

L]

, =~ 2 f(t)B..j_:dmfér [§ 7= vou] e [- 2 (s $9-4 (5-8)']

JACH

)

v/

g === f<.+->3~,£<*'\ W) exp =& (s 1)) -t AU b)"]

X .Ldé & exp(—.:aé‘ §.)

In the integrand of the expreasion for ébi’ we nave ¢ > ACY)
From (1) it follows that the integrand is always positive. In the
expression for <I} the sign of the integrand is the same as the

slign of a)(q). From (h) we see that w(n) is positive if qf< 33
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otherwise nepative. But rlor Q‘> a®* the gsaussian lactor is very
small, sc small in fact that the integration over n'>2' constitutes
onlv a few percent of the total value. Thus the integrals are
positive and éﬁ% and d;% have the same signg hence there is a net
circulation of flux about the neutral line indevnendent of the
relative magnitudes of a, b, and c.

Since the existence of a net circulation is independent
of a, b, and ¢ we shall 1imit the evaluation of the fluxes to

thc special case b =0, a = ¢c. Then X (y) =0 and

D>, = Dy = _»23?/4'2; f(t) B, a
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